4x^3-9X^2-8x+12=0
what is x
You asked:
MathBot Answer:
Assuming \(x\) and \(X\) are referring to the same variable.
\(x \in \left\{- \frac{\sqrt[3]{- \frac{243 X^{2}}{8} + \frac{\sqrt{\left(81 - \frac{243 X^{2}}{4}\right)^{2} - 864}}{2} + \frac{81}{2}}}{3} - \frac{2}{\sqrt[3]{- \frac{243 X^{2}}{8} + \frac{\sqrt{\left(81 - \frac{243 X^{2}}{4}\right)^{2} - 864}}{2} + \frac{81}{2}}}, - \frac{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{- \frac{243 X^{2}}{8} + \frac{\sqrt{\left(81 - \frac{243 X^{2}}{4}\right)^{2} - 864}}{2} + \frac{81}{2}}}{3} - \frac{2}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{- \frac{243 X^{2}}{8} + \frac{\sqrt{\left(81 - \frac{243 X^{2}}{4}\right)^{2} - 864}}{2} + \frac{81}{2}}}, - \frac{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{- \frac{243 X^{2}}{8} + \frac{\sqrt{\left(81 - \frac{243 X^{2}}{4}\right)^{2} - 864}}{2} + \frac{81}{2}}}{3} - \frac{2}{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{- \frac{243 X^{2}}{8} + \frac{\sqrt{\left(81 - \frac{243 X^{2}}{4}\right)^{2} - 864}}{2} + \frac{81}{2}}}\right\}\)