10!/9!(10-9)!
You asked:
Evaluate the expression: \(\frac{10!}{9! \cdot \left( 10 - 9 \right)!}\)
MathBot Answer:
\[\frac{10!}{9! \cdot \left( 10 - 9 \right)!} = 10\]
\[\begin{aligned}\frac{10!}{9! \cdot \left( 10 - 9 \right)!}& = 10! \cdot \frac{1}{9! \cdot \left(10 - 9\right)!}\\& = 3628800 \cdot \frac{1}{9! \cdot \left(10 - 9\right)!}\\& = 3628800 \cdot \frac{1}{362880 \cdot \left(10 - 9\right)!}\\& = 3628800 \cdot \frac{1}{362880 \cdot 1!}\\& = 3628800 \cdot \frac{1}{362880 \cdot 1}\\& = \frac{3628800}{362880}\\& = 10\end{aligned}\]