[(p ⇒ q) ∨ (¬q ∧ r)] ⇔ (r ⇒ q)

asked by guest
on Apr 23, 2024 at 6:23 pm

MathBot Answer:

Logic Expression
Symbol: $\left(\left(p \rightarrow q\right) \vee \left(\neg q \wedge r\right)\right) \leftrightarrow \left(r \rightarrow q\right)$
Text: $\left(\left(p \text{ implies } q\right) \text{ or } \left(\text{not } q \text{ and } r\right)\right) \text{ if and only if } \left(r \text{ implies } q\right)$


Classification contingency


Truth Table

Legend

$p$$q$$r$$p \rightarrow q$$\neg q$$\neg q \wedge r$$\left(p \rightarrow q\right) \vee \left(\neg q \wedge r\right)$$r \rightarrow q$$\left(\left(p \rightarrow q\right) \vee \left(\neg q \wedge r\right)\right) \leftrightarrow \left(r \rightarrow q\right)$
111100111
110100111
101011100
100010010
011100111
010100111
001111100
000110111
T/F

Simplification$$\begin{gathered} \left(\left(p \rightarrow q\right) \vee \left(\neg q \wedge r\right)\right) \leftrightarrow \left(r \rightarrow q\right) & \equiv & \left(\neg p \vee q \vee \left(\neg q \wedge r\right)\right) \leftrightarrow \left(r \rightarrow q\right) & \text{Conditional Equivalence} \\ & \equiv & \left(\neg p \vee q \vee r\right) \leftrightarrow \left(r \rightarrow q\right) & \text{Redundancy Law (2)} \\ & \equiv & \left(\neg p \vee q \vee r\right) \leftrightarrow \left(\neg r \vee q\right) & \text{Conditional Equivalence} \\ & \equiv & \left(\neg p \vee q \vee r \vee \neg \left(\neg r \vee q\right)\right) \wedge \left(\neg \left(\neg p \vee q \vee r\right) \vee \neg r \vee q\right) & \text{Biconditional Equivalence} \\ & \equiv & \left(\neg p \vee q \vee r \vee \left(\neg \left(\neg r\right) \wedge \neg q\right)\right) \wedge \left(\neg \left(\neg p \vee q \vee r\right) \vee \neg r \vee q\right) & \text{De Morgan's Law} \\ & \equiv & \left(\neg p \vee q \vee r \vee \left(r \wedge \neg q\right)\right) \wedge \left(\neg \left(\neg p \vee q \vee r\right) \vee \neg r \vee q\right) & \text{Double Negation Law} \\ & \equiv & \left(\neg p \vee q \vee r\right) \wedge \left(\neg \left(\neg p \vee q \vee r\right) \vee \neg r \vee q\right) & \text{Absorption Law} \\ & \equiv & \left(\neg p \vee q \vee r\right) \wedge \left(\neg r \vee q\right) & \text{Redundancy Law (2)} \\ & \equiv & q \vee \left(\left(\neg p \vee r\right) \wedge \neg r\right) & \text{Distributive Law} \\ & \equiv & q \vee \left(\neg p \wedge \neg r\right) & \text{Redundancy Law (2)} \end{gathered}$$ Note: Solution may not be as simplified as possible.


Conjunctive Normal Form$$\begin{gathered} q \vee \left(\neg p \wedge \neg r\right) & \equiv & \left(q \vee \neg p\right) \wedge \left(q \vee \neg r\right) & \text{Distributive Law} \end{gathered}$$ Note: Solution may not be as simplified as possible.


Note 1: These equivalences and tautologies are used to generate the above steps.
Note 2: Two logical statements are logically equivalent if they always produce the same truth value. Consequently, p ≡ q is same as saying p ↔ q is a tautology. $$\begin{array}{c|c}\textbf{Equivalence} \\ \hline \text{Absorption Law} & \begin{gathered} p \wedge \left(p \vee q\right) \equiv p \\ p \vee \left(p \wedge q\right) \equiv p \end{gathered} \\ \hline \text{Biconditional Equivalence} & \begin{gathered} p \leftrightarrow q \equiv \left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right) \\ p \leftrightarrow q \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge \neg q\right) \end{gathered} \\ \hline \text{Biconditional Simplification} & \begin{gathered} p \leftrightarrow p \equiv \text{True} & p \leftrightarrow \text{True} \equiv p \\ p \leftrightarrow \neg p \equiv \text{False} & p \leftrightarrow \text{False} \equiv \neg p \end{gathered} \\ \hline \text{Complement Law} & \begin{gathered} p \wedge \neg p \equiv \text{False} \\ p \vee \neg p \equiv \text{True} \end{gathered} \\ \hline \text{Conditional Equivalence} & p \rightarrow q \equiv \neg p \vee q \\ \hline \text{Conditional Simplification} & \begin{gathered} p \rightarrow p \equiv \text{True} & p \rightarrow \text{True} \equiv \text{True} & p \rightarrow \text{False} \equiv \neg p \\ p \rightarrow \neg p \equiv \neg p & \text{True} \rightarrow p \equiv p & \text{False} \rightarrow p \equiv \text{True} \\ \neg p \rightarrow p \equiv p\end{gathered} \\ \hline \text{Consensus Law} & \begin{gathered} \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \wedge \left(q \vee r\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \\ \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \vee \left(q \wedge r\right) \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \end{gathered} \\ \hline \text{De Morgan's Law} & \begin{gathered} \neg \left(p \wedge q\right) \equiv \neg p \vee \neg q \\ \neg \left(p \vee q\right) \equiv \neg p \wedge \neg q \end{gathered} \\ \hline \text{Distributive Law} & \begin{gathered} p \wedge \left(q \vee r\right) \equiv \left(p \wedge q\right) \vee \left(p \wedge r\right) \\ p \vee \left(q \wedge r\right) \equiv \left(p \vee q\right) \wedge \left(p \vee r\right) \\ \left(p \vee q\right) \wedge \left(r \vee s\right) \equiv \left(p \wedge r\right) \vee \left(p \wedge s\right) \vee \left(q \wedge r\right) \vee \left(q \wedge s\right) \\ \left(p \wedge q\right) \vee \left(r \wedge s\right) \equiv \left(p \vee r\right) \wedge \left(p \vee s\right) \wedge \left(q \vee r\right) \wedge \left(q \vee s\right) \end{gathered} \\ \hline \text{Domination Law} & \begin{gathered} p \vee \text{True} \equiv \text{True} \\ p \wedge \text{False} \equiv \text{False} \end{gathered} \\ \hline \text{Double Negation Law} & \neg \left(\neg p\right) \equiv p \\ \hline \text{Idempotent Law} & \begin{gathered} p \wedge p \equiv p \\ p \vee p \equiv p \end{gathered} \\ \hline \text{Identity Law} & \begin{gathered} p \wedge \text{True} \equiv p \\ p \vee \text{False} \equiv p \end{gathered} \\ \hline \text{NAND} & p \uparrow q \equiv \neg \left(p \wedge q\right) \\ \hline \text{Negation Law} & \begin{gathered} \neg \text{True} \equiv \text{False} \\ \neg \text{False} \equiv \text{True} \end{gathered} \\ \hline \text{NOR} & p \downarrow q \equiv \neg \left(p \vee q\right) \\ \hline \text{Negation of Biconditional Equivalence} & \begin{gathered} \neg \left(p \leftrightarrow q\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ \neg \left(p \leftrightarrow q\right) \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{Negation of Conditional Equivalence} & \neg \left(p \rightarrow q\right) \equiv p \wedge \neg q \\ \hline \text{Redundancy Law (1)} & \begin{gathered} \left(p \vee q\right) \wedge \left(p \vee \neg q\right) \equiv p \\ \left(p \wedge q\right) \vee \left(p \wedge \neg q\right) \equiv p \end{gathered} \\ \hline \text{Redundancy Law (2)} & \begin{gathered} p \wedge \left(\neg p \vee q\right) \equiv p \wedge q \\ p \vee \left(\neg p \wedge q\right) \equiv p \vee q \end{gathered} \\ \hline \text{XOR} & \begin{gathered} p \oplus q \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ p \oplus q \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{XOR Simplification} & \begin{gathered} p \oplus p \equiv \text{False} & p \oplus \text{True} \equiv \neg p \\ p \oplus \neg p \equiv \text{True} & p \oplus \text{False} \equiv p \end{gathered} \\ \hline \text{XNOR} & p \odot q \equiv \neg \left(p \oplus q\right) \end{array}$$ $$\begin{array}{c|c}\textbf{Tautology} \\ \hline \text{Conjunctive Simplification} & \begin{gathered} \left(p \wedge q\right) \rightarrow p \\ \left(p \wedge q\right) \rightarrow q \end{gathered} \\ \hline \text{Contradiction} & \neg \left(p \wedge \neg p\right) \\ \hline \text{Contrapositive} & \left(p \rightarrow q\right) \leftrightarrow \left(\neg q \rightarrow \neg p\right) \\ \hline \text{Disjunctive Addition} & \begin{gathered} p \rightarrow \left(p \vee q\right) \\ q \rightarrow \left(p \vee q\right) \end{gathered} \\ \hline \text{Disjunctive Syllogism} & \begin{gathered} \left(\left(p \vee q\right) \wedge \neg q\right) \rightarrow p \\ \left(\left(p \vee q\right) \wedge \neg p\right) \rightarrow q \end{gathered} \\ \hline \text{Hypothetical Syllogism} & \left(\left(p \rightarrow q\right) \wedge \left(q \rightarrow r\right)\right) \rightarrow \left(p \rightarrow r\right) \\ \hline \text{Modus Ponens} & \left(p \wedge \left(p \rightarrow q\right)\right) \rightarrow q \\ \hline \text{Modus Tollens} & \left(\neg q \wedge \left(p \rightarrow q\right)\right) \rightarrow \neg p \end{array}$$

asked 11 days ago

active 11 days ago