2*( $\sqrt{x^(2m-4)}$) * ($\sqrt{81x^(6-2m)}$)
You asked:
Evaluate the expression: \(2 \cdot \sqrt{{x}^{2 m - 4}} \cdot \sqrt{81 \cdot {x}^{6 - 2 m}}\)
MathBot Answer:
Evaluated
\(\displaystyle 2 \cdot \sqrt{{x}^{2 m - 4}} \cdot \sqrt{81 \cdot {x}^{6 - 2 m}} = 18 \sqrt{x^{6 - 2 m}} \sqrt{x^{2 m - 4}} \)
Expanded
\[2 \cdot \sqrt{{x}^{2 m - 4}} \cdot \sqrt{81 \cdot {x}^{6 - 2 m}} = 18 \sqrt{\frac{x^{2 m}}{x^{4}}} \sqrt{x^{6} x^{- 2 m}}\]
Factored
\[2 \cdot \sqrt{{x}^{2 m - 4}} \cdot \sqrt{81 \cdot {x}^{6 - 2 m}} = 18 \sqrt{\frac{x^{2 m}}{x^{4}}} \sqrt{x^{6} x^{- 2 m}}\]