cos0,79

asked by guest
on Nov 28, 2024 at 6:35 pm



MathBot Answer:

The sum of \(\cos\left( 0 \right)\) and \(79\) is:

\[\begin{aligned}&=\left(\cos\left( 0 \right)\right) + \left(79\right) \\\\ &= \cos{\left(0 \right)} + 79 \\\\ &= 80 \\\\\end{aligned}\]


The difference of \(\cos\left( 0 \right)\) and \(79\) is:

\[\begin{aligned}&=\left(\cos\left( 0 \right)\right) - \left(79\right) \\\\ &= -79 + \cos{\left(0 \right)} \\\\ &= -78 \\\\\end{aligned}\]


The product of \(\cos\left( 0 \right)\) and \(79\) is:

\[\begin{aligned}&=\left(\cos\left( 0 \right)\right) \cdot \left(79\right) \\\\ &= 79 \cos{\left(0 \right)} \\\\ &=0 \\\\\end{aligned}\]


The quotient of \(\cos\left( 0 \right)\) and \(79\) is:

\[\begin{aligned}&= \frac{\left(\cos\left( 0 \right)\right)}{\left(79\right)} \\\\ &= \frac{\cos{\left(0 \right)}}{79} \\\\ &= 0 \\\\\end{aligned}\]