1, 3, 5, 7
work out the nth term
MathBot Answer:
$$1,3,5,7,...$$This infinite sequence is an arithmetic sequence. The nth term rule for the sequence is $a_n=2 n - 1$, where $n>0$. The recursive formula is $a_n=a_{n-1} + 2$, where $n>1$ and $a_{1}=1$.
$$\begin{matrix}1&&3&&5&&7\\[6pt]&+2&&+2&&+2\\[6pt]\end{matrix}$$
Explicit Formula
The formula for an arithmetic sequence where $a_1$ is the 1st term, $d$ is the common difference, and $n$ is the term number is $$a_n=a_1 + d (n - 1)$$
Find $a_1$ and $d$: $$\begin{aligned} a_1&=1 \\ d&=2 \end{aligned}$$
The nth term rule is:$$\begin{aligned} a_n&=a_1 + d (n - 1) \\ &=1 + 2 (n - 1) \\ &=2 n - 1 \end{aligned}$$
Recursive Formula
The formula for an arithmetic sequence where $a_{n-1}$ is the (n-1)th term, $d$ is the common difference, and $n>1$ is $$a_n=a_{n-1} + d$$
Find $d$: $$\begin{aligned} d=2 \end{aligned}$$
The nth term rule is:$$\begin{aligned} a_n&=a_{n-1} + d \\ &=a_{n-1} + 2 \\ &=a_{n-1} + 2 \end{aligned}$$