=(-0.03x^6+0.12x^5-0.37x^4+0.79x^3-1.08x^2+0.83x+1.73)(-0.03x^6+0.12x^5-0.37x^4+0.79x^3-1.08x^2+0.83x+1.73)

asked by guest
on Nov 22, 2024 at 10:53 am



You asked:

Evaluate the expression: \(\left(-\left( 0.03 {x}^{6} \right) + 0.12 {x}^{5} - 0.37 {x}^{4} + 0.79 {x}^{3} - 1.08 {x}^{2} + 0.83 x + 1.73\right) \cdot \left(-\left( 0.03 {x}^{6} \right) + 0.12 {x}^{5} - 0.37 {x}^{4} + 0.79 {x}^{3} - 1.08 {x}^{2} + 0.83 x + 1.73\right)\)

MathBot Answer:

Evaluated



\(\displaystyle \left(-\left( 0.03 {x}^{6} \right) + 0.12 {x}^{5} - 0.37 {x}^{4} + 0.79 {x}^{3} - 1.08 {x}^{2} + 0.83 x + 1.73\right) \cdot \left(-\left( 0.03 {x}^{6} \right) + 0.12 {x}^{5} - 0.37 {x}^{4} + 0.79 {x}^{3} - 1.08 {x}^{2} + 0.83 x + 1.73\right) = \left(- \frac{3 x^{6}}{100} + \frac{3 x^{5}}{25} - \frac{37 x^{4}}{100} + \frac{79 x^{3}}{100} - \frac{27 x^{2}}{25} + \frac{83 x}{100} + \frac{173}{100}\right)^{2} \)


Expanded

\[\left(-\left( 0.03 {x}^{6} \right) + 0.12 {x}^{5} - 0.37 {x}^{4} + 0.79 {x}^{3} - 1.08 {x}^{2} + 0.83 x + 1.73\right) \cdot \left(-\left( 0.03 {x}^{6} \right) + 0.12 {x}^{5} - 0.37 {x}^{4} + 0.79 {x}^{3} - 1.08 {x}^{2} + 0.83 x + 1.73\right) = \frac{9 x^{12}}{10000} - \frac{9 x^{11}}{1250} + \frac{183 x^{10}}{5000} - \frac{681 x^{9}}{5000} + \frac{3913 x^{8}}{10000} - \frac{1117 x^{7}}{1250} + \frac{15187 x^{6}}{10000} - \frac{9527 x^{5}}{5000} + \frac{1497 x^{4}}{1250} + \frac{4703 x^{3}}{5000} - \frac{30479 x^{2}}{10000} + \frac{14359 x}{5000} + \frac{29929}{10000}\]


Factored

\[\left(-\left( 0.03 {x}^{6} \right) + 0.12 {x}^{5} - 0.37 {x}^{4} + 0.79 {x}^{3} - 1.08 {x}^{2} + 0.83 x + 1.73\right) \cdot \left(-\left( 0.03 {x}^{6} \right) + 0.12 {x}^{5} - 0.37 {x}^{4} + 0.79 {x}^{3} - 1.08 {x}^{2} + 0.83 x + 1.73\right) = \frac{\left(3 x^{6} - 12 x^{5} + 37 x^{4} - 79 x^{3} + 108 x^{2} - 83 x - 173\right)^{2}}{10000}\]