solve for x, (-400+x^2) - 0.1475x - 2621.44=0

asked by guest
on Nov 28, 2024 at 10:46 am



You asked:

Solve the equation \[-400 + {x}^{2} - 0.1475 x - 2621.44 = 0\] for the unknown \(x\).

MathBot Answer:

\[\begin{aligned}x &= \frac{59}{800} + \frac{\sqrt{1933725081}}{800} \approx 55.041426\\x &= \frac{59}{800} - \frac{\sqrt{1933725081}}{800} \approx -54.893926\end{aligned}\]

Solve by quadratic formula:

Given a quadratic equation \(a x^{2} + b x + c = 0\), where \(a\), \(b\), \(c\) are constants and \(a \ne 0\), the solutions are given by the quadratic formula: \[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\] In this case \(a=1\), \(b=- \frac{59}{400}\), and \(c=- \frac{75536}{25}\).

The discriminant is the quantity under the square root sign in the quadratic formula, and its sign determines the number of solutions to the quadratic equation when the coefficients are real. The discriminant is:\[b^{2}-4ac = \left(- \frac{59}{400}\right)^{2} - 4 \left(- \frac{75536}{25}\right)=\frac{1933725081}{160000} > 0\] The discriminant is greater than zero, so this quadratic equation has two real solutions.

The two solutions are: \[x = \frac{\left(-1\right) \left(- \frac{59}{400}\right) + \sqrt{\frac{1933725081}{160000}}}{2 \cdot 1} = \frac{59}{800} + \frac{\sqrt{1933725081}}{800} \approx 55.041426\] \[x = \frac{\left(-1\right) \left(- \frac{59}{400}\right) - \sqrt{\frac{1933725081}{160000}}}{2 \cdot 1} = \frac{59}{800} - \frac{\sqrt{1933725081}}{800} \approx -54.893926\]