\int_{0}^{7}x\left(7-x\right)\sin\left(\frac{n\pi x}{7}\right)dx

asked by guest
on Nov 16, 2024 at 10:28 pm



You asked:

Evaluate the integral: \(\int_{0}^{7}{x \cdot \left(7 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{7} \right)}dx\)

MathBot Answer:

Evaluated



\(\displaystyle \int_{0}^{7}{x \cdot \left(7 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{7} \right)}dx = \begin{cases} - \frac{343 \sin{\left(n \pi \right)}}{n^{2} \pi^{2}} - \frac{686 \cos{\left(n \pi \right)}}{n^{3} \pi^{3}} + \frac{686}{n^{3} \pi^{3}} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq 0 \\0 & \text{otherwise} \end{cases} \)


Expanded

\[\int_{0}^{7}{x \cdot \left(7 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{7} \right)}dx = \int\limits_{0}^{7} \left(- x^{2} \sin{\left(\frac{n x \pi}{7} \right)}\right)\, dx + \int\limits_{0}^{7} 7 x \sin{\left(\frac{n x \pi}{7} \right)}\, dx\]


Factored

\[\int_{0}^{7}{x \cdot \left(7 - x\right) \cdot \sin\left( \frac{n \cdot \pi \cdot x}{7} \right)}dx = - \int\limits_{0}^{7} x \left(x - 7\right) \sin{\left(\frac{n x \pi}{7} \right)}\, dx\]