Hx-5/6 - 2 1/3 = 3x+1/8
You asked:
Investigate the equation: \(H x - \frac{5}{6} - 2\frac{1}{3} = 3 x + \frac{1}{8}\).
MathBot Answer:
The graph of the equation \(H x - \frac{5}{6} - 2\frac{1}{3} = 3 x + \frac{1}{8}\) is a hyperbola.
The coordinates of its foci are: \(\left(3 - \frac{\sqrt{237}}{6}, - \frac{\sqrt{237}}{6}\right)\) and \(\left(\frac{\sqrt{237}}{6} + 3, \frac{\sqrt{237}}{6}\right)\).
The coordinates of its vertices are: \(\left(3 - \frac{\sqrt{474}}{12}, - \frac{\sqrt{474}}{12}\right)\) and \(\left(\frac{\sqrt{474}}{12} + 3, \frac{\sqrt{474}}{12}\right)\).
The asymptotes have equations: \(- \sqrt{474} H + 3 \sqrt{474} = 0\) and \(- \sqrt{474} x = 0\).