log $_{5}$ (-2x+10)=log $_5$(7-5x)
You asked:
Solve the equation \(\log_{5}\left( -\left( 2 x \right) + 10 \right) = \log_{5}\left( 7 - 5 x \right)\) for the variable \(x\).
MathBot Answer:
The complex solutions are: \[\left\{x\; \middle|\; x \in \mathbb{R} \wedge - \left(7 - 5 x\right)^{\frac{1}{\log{\left(5 \right)}}} + \left(10 - 2 x\right)^{\frac{1}{\log{\left(5 \right)}}} = 0 \right\} \setminus \left\{\frac{7}{5}\right\}\]