3*(x+4)*($x^{2}$-x-6)
You asked:
Evaluate the expression: \(3 \cdot \left(x + 4\right) \cdot \left({x}^{2} - x - 6\right)\)
MathBot Answer:
Evaluated
\(\displaystyle 3 \cdot \left(x + 4\right) \cdot \left({x}^{2} - x - 6\right) = 3 \left(x + 4\right) \left(x^{2} - x - 6\right) \)
Expanded
\[3 \cdot \left(x + 4\right) \cdot \left({x}^{2} - x - 6\right) = 3 x^{3} + 9 x^{2} - 30 x - 72\]
Factored
\[3 \cdot \left(x + 4\right) \cdot \left({x}^{2} - x - 6\right) = 3 \left(x - 3\right) \left(x + 2\right) \left(x + 4\right)\]