simplify <br/>$$10\left(x-1\right)^2+5\left(x-1\right)$$
You asked:
Simplify the expression: \(10 {\left( x - 1 \right)}^{2} + 5 \left(x - 1\right)\)
MathBot Answer:
Simplified:
\[ 10 {\left( x - 1 \right)}^{2} + 5 \left(x - 1\right) = 5 x + 10 \left(x - 1\right)^{2} - 5 \]
$$\begin{aligned}10 \left(x - 1\right)^{2} + 5 \left(x - 1\right)\\10 \left(x^{2} - 2 x + 1\right) + 5 \left(x - 1\right)\\10 \left(x^{2} - 2 x + 1\right) + 5 x - 5\\10 x^{2} - 20 x + 10 + 5 x - 5\\10 x^{2} - 15 x + 5\end{aligned}$$
Expanded:
\[ 10 {\left( x - 1 \right)}^{2} + 5 \left(x - 1\right) = 10 x^{2} - 15 x + 5 \]
Factored:
\[ 10 {\left( x - 1 \right)}^{2} + 5 \left(x - 1\right) = 5 \cdot \left(2 x - 1\right) \left(x - 1\right) \]