b^(2)c^(2)(b^(2)-c^(2))+c^(2)a^(2)(c^(2)-a^(2))+a^(2)b^(2)(a^(2)-b^(2))

asked by guest
on Nov 16, 2024 at 7:07 pm



You asked:

Evaluate the expression: b2c2(b2c2)+c2a2(c2a2)+a2b2(a2b2){b}^{2} {c}^{2} \left({b}^{2} - {c}^{2}\right) + {c}^{2} {a}^{2} \left({c}^{2} - {a}^{2}\right) + {a}^{2} {b}^{2} \left({a}^{2} - {b}^{2}\right)

MathBot Answer:

Evaluated



b2c2(b2c2)+c2a2(c2a2)+a2b2(a2b2)=a2b2(a2b2)+a2c2(a2+c2)+b2c2(b2c2)\displaystyle {b}^{2} {c}^{2} \left({b}^{2} - {c}^{2}\right) + {c}^{2} {a}^{2} \left({c}^{2} - {a}^{2}\right) + {a}^{2} {b}^{2} \left({a}^{2} - {b}^{2}\right) = a^{2} b^{2} \left(a^{2} - b^{2}\right) + a^{2} c^{2} \left(- a^{2} + c^{2}\right) + b^{2} c^{2} \left(b^{2} - c^{2}\right)


Expanded

b2c2(b2c2)+c2a2(c2a2)+a2b2(a2b2)=a4b2a4c2a2b4+a2c4+b4c2b2c4{b}^{2} {c}^{2} \left({b}^{2} - {c}^{2}\right) + {c}^{2} {a}^{2} \left({c}^{2} - {a}^{2}\right) + {a}^{2} {b}^{2} \left({a}^{2} - {b}^{2}\right) = a^{4} b^{2} - a^{4} c^{2} - a^{2} b^{4} + a^{2} c^{4} + b^{4} c^{2} - b^{2} c^{4}


Factored

b2c2(b2c2)+c2a2(c2a2)+a2b2(a2b2)=(ab)(ac)(a+b)(a+c)(bc)(b+c){b}^{2} {c}^{2} \left({b}^{2} - {c}^{2}\right) + {c}^{2} {a}^{2} \left({c}^{2} - {a}^{2}\right) + {a}^{2} {b}^{2} \left({a}^{2} - {b}^{2}\right) = \left(a - b\right) \left(a - c\right) \left(a + b\right) \left(a + c\right) \left(b - c\right) \left(b + c\right)