(x^2-3)^(1/2) + x^2 - 4 <= 0
You asked:
Solve the inequality \( {\left( {x}^{2} - 3 \right)}^{\frac{1}{2}} + {x}^{2} - 4 \le 0 \) for the variable \(x\).
MathBot Answer:
\[- \frac{\sqrt{18 - 2 \sqrt{5}}}{2} \le x\leq- \sqrt{3} \wedge \sqrt{3} \le x\leq\frac{\sqrt{18 - 2 \sqrt{5}}}{2}\]