𝟏𝟏𝒊(−𝟖𝒊 + 𝟏𝟎)

asked by guest
on Mar 25, 2025 at 5:54 pm



You asked:

Evaluate the expression: 11i((8i)+10)11 i \left(-\left( 8 i \right) + 10\right)

MathBot Answer:

Evaluated



11i((8i)+10)=11i(108i)\displaystyle 11 i \left(-\left( 8 i \right) + 10\right) = 11 i \left(10 - 8 i\right)


Expanded

11i((8i)+10)=88+110i11 i \left(-\left( 8 i \right) + 10\right) = 88 + 110 i


Factored

11i((8i)+10)=22i(54i)11 i \left(-\left( 8 i \right) + 10\right) = 22 i \left(5 - 4 i\right)


ii is the imaginary unit, defined as i2=1i^2 = -1.