(14/7) + {(16/4)-[(3/6)*((2/8)+(2/4))/(4/5)]}*(4/58)

asked by guest
on Jan 10, 2025 at 8:02 am



You asked:

Evaluate the expression: \(\frac{14}{7} + \left(\frac{16}{4} - \frac{\frac{3}{6} \left(\frac{2}{8} + \frac{2}{4}\right)}{\frac{4}{5}}\right) \cdot \frac{4}{58}\)

MathBot Answer:

\[\frac{14}{7} + \left(\frac{16}{4} - \frac{\frac{3}{6} \left(\frac{2}{8} + \frac{2}{4}\right)}{\frac{4}{5}}\right) \cdot \frac{4}{58} = \frac{1041}{464} = 2.2435\overline{3448275862068965517241379310}\]


\[\begin{aligned}\frac{14}{7} + \left(\frac{16}{4} - \frac{\frac{3}{6} \left(\frac{2}{8} + \frac{2}{4}\right)}{\frac{4}{5}}\right) \cdot \frac{4}{58}& = \frac{14}{7} + \left(\frac{16}{4} - \frac{3}{6} \cdot \left(\frac{2}{8} + \frac{2}{4}\right) \cdot \frac{1}{\frac{4}{5}}\right) \cdot \frac{4}{58}\\& = \frac{14}{7} + \left(\frac{16}{4} - \frac{3}{6} \cdot \frac{3}{4} \cdot \frac{1}{\frac{4}{5}}\right) \cdot \frac{4}{58}\\& = \frac{14}{7} + \left(\frac{16}{4} - \frac{3}{6} \cdot \frac{15}{16}\right) \cdot \frac{4}{58}\\& = \frac{14}{7} + \left(\frac{16}{4} - \frac{15}{32}\right) \cdot \frac{4}{58}\\& = \frac{14}{7} + \frac{113}{32} \cdot \frac{4}{58}\\& = \frac{14}{7} + \frac{113}{464}\\& = \frac{1041}{464}\end{aligned}\]