(5k -2)(5k + 2) - (1 - k)(1+k)

asked by guest
on Nov 26, 2024 at 3:38 am



You asked:

Evaluate the expression: \(\left(5 k - 2\right) \cdot \left(5 k + 2\right) - \left(1 - k\right) \cdot \left(1 + k\right)\)

MathBot Answer:

Evaluated



\(\displaystyle \left(5 k - 2\right) \cdot \left(5 k + 2\right) - \left(1 - k\right) \cdot \left(1 + k\right) = - \left(1 - k\right) \left(k + 1\right) + \left(5 k - 2\right) \left(5 k + 2\right) \)


Expanded

\[\left(5 k - 2\right) \cdot \left(5 k + 2\right) - \left(1 - k\right) \cdot \left(1 + k\right) = 26 k^{2} - 5\]


Factored

\[\left(5 k - 2\right) \cdot \left(5 k + 2\right) - \left(1 - k\right) \cdot \left(1 + k\right) = 26 k^{2} - 5\]