(5k -2)(5k + 2) - (1 - k)(1+k)
You asked:
Evaluate the expression: \(\left(5 k - 2\right) \cdot \left(5 k + 2\right) - \left(1 - k\right) \cdot \left(1 + k\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(5 k - 2\right) \cdot \left(5 k + 2\right) - \left(1 - k\right) \cdot \left(1 + k\right) = - \left(1 - k\right) \left(k + 1\right) + \left(5 k - 2\right) \left(5 k + 2\right) \)
Expanded
\[\left(5 k - 2\right) \cdot \left(5 k + 2\right) - \left(1 - k\right) \cdot \left(1 + k\right) = 26 k^{2} - 5\]
Factored
\[\left(5 k - 2\right) \cdot \left(5 k + 2\right) - \left(1 - k\right) \cdot \left(1 + k\right) = 26 k^{2} - 5\]