16.45*2.8+4.5*1.6
You asked:
MathBot Answer:
\[16.45 \cdot 2.8 + 4.5 \cdot 1.6 = \frac{2663}{50} = 53.26\]
\[\begin{aligned}16.45 \cdot 2.8 + 4.5 \cdot 1.6& = \left(16 + \frac{45}{100}\right) \cdot \left(2 + \frac{8}{10}\right) + \left(4 + \frac{5}{10}\right) \cdot \left(1 + \frac{6}{10}\right)\\& = \left(16 + \frac{9}{20}\right) \cdot \left(2 + \frac{8}{10}\right) + \left(4 + \frac{5}{10}\right) \cdot \left(1 + \frac{6}{10}\right)\\& = \frac{329}{20} \cdot \left(2 + \frac{8}{10}\right) + \left(4 + \frac{5}{10}\right) \cdot \left(1 + \frac{6}{10}\right)\\& = \frac{329}{20} \cdot \left(2 + \frac{4}{5}\right) + \left(4 + \frac{5}{10}\right) \cdot \left(1 + \frac{6}{10}\right)\\& = \frac{329}{20} \cdot \frac{14}{5} + \left(4 + \frac{5}{10}\right) \cdot \left(1 + \frac{6}{10}\right)\\& = \frac{2303}{50} + \left(4 + \frac{5}{10}\right) \cdot \left(1 + \frac{6}{10}\right)\\& = \frac{2303}{50} + \left(4 + \frac{1}{2}\right) \cdot \left(1 + \frac{6}{10}\right)\\& = \frac{2303}{50} + \frac{9}{2} \cdot \left(1 + \frac{6}{10}\right)\\& = \frac{2303}{50} + \frac{9}{2} \cdot \left(1 + \frac{3}{5}\right)\\& = \frac{2303}{50} + \frac{9}{2} \cdot \frac{8}{5}\\& = \frac{2303}{50} + \frac{36}{5}\\& = \frac{2663}{50}\end{aligned}\]