-(3/2) * sin(49 pi /20) + 1

asked by guest
on Nov 26, 2024 at 2:35 pm



You asked:

Evaluate the expression: (32)sin(49π20)+1-\left( \frac{3}{2} \right) \cdot \sin\left( \frac{49 \pi}{20} \right) + 1

MathBot Answer:

(32)sin(49π20)+1=32(14+54)43258584+10.48153251089270658928506037154016-\left( \frac{3}{2} \right) \cdot \sin\left( \frac{49 \pi}{20} \right) + 1 = - \frac{3 \sqrt{2} \cdot \left(\frac{1}{4} + \frac{\sqrt{5}}{4}\right)}{4} - \frac{3 \sqrt{2} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{4} + 1 \approx -0.48153251089270658928506037154016


(32)sin(49π20)+1=32sin(49π20)+1=32sin(4920π)+1=32(12258185+122(14+145))+1=(34258185342(14+145))+1=134258185342(14+145)\begin{aligned}-\left( \frac{3}{2} \right) \cdot \sin\left( \frac{49 \pi}{20} \right) + 1&=- \frac{3}{2} \cdot \sin{\left(49 \cdot \frac{\pi}{20} \right)} + 1\\&=- \frac{3}{2} \cdot \sin{\left(\frac{49}{20} \cdot \pi \right)} + 1\\&=- \frac{3}{2} \cdot \left(\frac{1}{2} \cdot \sqrt{2} \cdot \sqrt{\frac{5}{8} - \frac{1}{8} \cdot \sqrt{5}} + \frac{1}{2} \cdot \sqrt{2} \cdot \left(\frac{1}{4} + \frac{1}{4} \cdot \sqrt{5}\right)\right) + 1\\&=\left(- \frac{3}{4} \cdot \sqrt{2} \cdot \sqrt{\frac{5}{8} - \frac{1}{8} \cdot \sqrt{5}} - \frac{3}{4} \cdot \sqrt{2} \cdot \left(\frac{1}{4} + \frac{1}{4} \cdot \sqrt{5}\right)\right) + 1\\&=1 - \frac{3}{4} \cdot \sqrt{2} \cdot \sqrt{\frac{5}{8} - \frac{1}{8} \cdot \sqrt{5}} - \frac{3}{4} \cdot \sqrt{2} \cdot \left(\frac{1}{4} + \frac{1}{4} \cdot \sqrt{5}\right)\end{aligned}