x^3+1/X^3=198 FIND X
You asked:
Solve the equation \[{x}^{3} + \frac{1}{{X}^{3}} = 198\] for the unknown \(X\).
MathBot Answer:
$$\begin{aligned}X &= \sqrt[3]{- \frac{1}{x^{3} - 198}}\\X &= - \frac{\sqrt[3]{- \frac{1}{x^{3} - 198}}}{2} - \frac{\sqrt{3} i \sqrt[3]{- \frac{1}{x^{3} - 198}}}{2}\\X &= - \frac{\sqrt[3]{- \frac{1}{x^{3} - 198}}}{2} + \frac{\sqrt{3} i \sqrt[3]{- \frac{1}{x^{3} - 198}}}{2}\end{aligned}$$ and \(X \neq 0\)