x^3+1/X^3=198 FIND X

asked by guest
on Jan 15, 2025 at 11:00 am



You asked:

Solve the equation x3+1X3=198{x}^{3} + \frac{1}{{X}^{3}} = 198 for the unknown XX.

MathBot Answer:

X=1x31983X=1x3198323i1x319832X=1x319832+3i1x319832\begin{aligned}X &= \sqrt[3]{- \frac{1}{x^{3} - 198}}\\X &= - \frac{\sqrt[3]{- \frac{1}{x^{3} - 198}}}{2} - \frac{\sqrt{3} i \sqrt[3]{- \frac{1}{x^{3} - 198}}}{2}\\X &= - \frac{\sqrt[3]{- \frac{1}{x^{3} - 198}}}{2} + \frac{\sqrt{3} i \sqrt[3]{- \frac{1}{x^{3} - 198}}}{2}\end{aligned} and X0X \neq 0