0.01-0.1-03001+10.001
You asked:
Evaluate the expression: \(0.01 - 0.1 - 03001 + 10.001\)
MathBot Answer:
\[ 0.01 - 0.1 - 03001 + 10.001 = - \frac{2991089}{1000} = -2991.089 \]
The sum can be computed by rewriting each term over a common denominator, where the least common denominator of \(\frac{1}{100}\), \(\frac{-1}{10}\), \(\frac{-3001}{1}\), \(\frac{10}{1}\), and \(\frac{1}{1000}\) is \(1000\). \[ \begin{aligned} 0.01 - 0.1 - 03001 + 10.001 &= \frac{1 \cdot 10}{100 \cdot 10} + \frac{-1 \cdot 100}{10 \cdot 100} + \frac{-3001 \cdot 1000}{1 \cdot 1000} + \frac{10 \cdot 1000}{1 \cdot 1000} + \frac{1 \cdot 1}{1000 \cdot 1} \\ &= \frac{10 + -100 + -3001000 + 10000 + 1}{1000} \\ &= \frac{-2991089}{1000} \end{aligned} \]