(700-(0.1x10^12Wm^-3))(0.0004m)^2/62.52Wm^-1
You asked:
Evaluate the expression: \(\frac{\left(700 - 0.1 \cdot {10}^{12} \cdot W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{\left(700 - 0.1 \cdot {10}^{12} \cdot W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}} = \frac{m^{3} \left(- \frac{100000000000 W}{m^{3}} + 700\right)}{390750000 W} \)
Expanded
\[\frac{\left(700 - 0.1 \cdot {10}^{12} \cdot W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}} = - \frac{400000}{1563} + \frac{7 m^{3}}{3907500 W}\]
Factored
\[\frac{\left(700 - 0.1 \cdot {10}^{12} \cdot W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}} = - \frac{1000000000 W - 7 m^{3}}{3907500 W}\]