(700-(0.1x10^12Wm^-3))(0.0004m)^2/62.52Wm^-1

asked by guest
on Nov 13, 2024 at 1:41 am



You asked:

Evaluate the expression: (7000.11012Wm3)(0.0004m)262.52Wm1\frac{\left(700 - 0.1 \cdot {10}^{12} W {m}^{-3}\right) {\left( 0.0004 m \right)}^{2}}{62.52 W {m}^{-1}}

MathBot Answer:

Evaluated



(7000.11012Wm3)(0.0004m)262.52Wm1=m3(100000000000Wm3+700)390750000W\displaystyle \frac{\left(700 - 0.1 \cdot {10}^{12} W {m}^{-3}\right) {\left( 0.0004 m \right)}^{2}}{62.52 W {m}^{-1}} = \frac{m^{3} \left(- \frac{100000000000 W}{m^{3}} + 700\right)}{390750000 W}


Expanded

(7000.11012Wm3)(0.0004m)262.52Wm1=4000001563+7m33907500W\frac{\left(700 - 0.1 \cdot {10}^{12} W {m}^{-3}\right) {\left( 0.0004 m \right)}^{2}}{62.52 W {m}^{-1}} = - \frac{400000}{1563} + \frac{7 m^{3}}{3907500 W}


Factored

(7000.11012Wm3)(0.0004m)262.52Wm1=1000000000W7m33907500W\frac{\left(700 - 0.1 \cdot {10}^{12} W {m}^{-3}\right) {\left( 0.0004 m \right)}^{2}}{62.52 W {m}^{-1}} = - \frac{1000000000 W - 7 m^{3}}{3907500 W}