(4t-5)(2+3t)-(7t+5)(3t-1)
You asked:
Evaluate the expression: \(\left(4 t - 5\right) \cdot \left(2 + 3 t\right) - \left(7 t + 5\right) \cdot \left(3 t - 1\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(4 t - 5\right) \cdot \left(2 + 3 t\right) - \left(7 t + 5\right) \cdot \left(3 t - 1\right) = - \left(3 t - 1\right) \left(7 t + 5\right) + \left(3 t + 2\right) \left(4 t - 5\right) \)
Expanded
\[\left(4 t - 5\right) \cdot \left(2 + 3 t\right) - \left(7 t + 5\right) \cdot \left(3 t - 1\right) = - 9 t^{2} - 15 t - 5\]
Factored
\[\left(4 t - 5\right) \cdot \left(2 + 3 t\right) - \left(7 t + 5\right) \cdot \left(3 t - 1\right) = - 9 t^{2} - 15 t - 5\]