(4t-5)(2+3t)-(7t+5)(3t-1)

asked by guest
on Nov 13, 2024 at 7:47 pm



You asked:

Evaluate the expression: \(\left(4 t - 5\right) \cdot \left(2 + 3 t\right) - \left(7 t + 5\right) \cdot \left(3 t - 1\right)\)

MathBot Answer:

Evaluated



\(\displaystyle \left(4 t - 5\right) \cdot \left(2 + 3 t\right) - \left(7 t + 5\right) \cdot \left(3 t - 1\right) = - \left(3 t - 1\right) \left(7 t + 5\right) + \left(3 t + 2\right) \left(4 t - 5\right) \)


Expanded

\[\left(4 t - 5\right) \cdot \left(2 + 3 t\right) - \left(7 t + 5\right) \cdot \left(3 t - 1\right) = - 9 t^{2} - 15 t - 5\]


Factored

\[\left(4 t - 5\right) \cdot \left(2 + 3 t\right) - \left(7 t + 5\right) \cdot \left(3 t - 1\right) = - 9 t^{2} - 15 t - 5\]