Could you calculate the value of the following expression?
∑t=1∞1(1+x)t\sum_{t=1}^{\infty}{\frac{1}{(1+x)^t}}t=1∑∞(1+x)t1
asked by guest on Nov 16, 2024 at 3:04 pm
You asked:
MathBot Answer:
Simplified: ∑t=1∞1(1+x)t=∑t=1∞(x+1)−t\sum_{t = 1}^{\infty} {\frac{1}{{\left( 1 + x \right)}^{t}}} = \sum_{t=1}^{\infty} \left(x + 1\right)^{- t}t=1∑∞(1+x)t1=t=1∑∞(x+1)−t