$\int{\frac{y}{\sqrt{1 + {y}^{2}}}}dy = -\int{\frac{x}{\sqrt{1 + {x}^{2}}}}dx$
You asked:
Investigate the equation: \(\int \frac{y}{\sqrt{1 + {y}^{2}}} \cdot d y = -\int \frac{x}{\sqrt{1 + {x}^{2}}} \cdot d x\).
$\int{\frac{y}{\sqrt{1 + {y}^{2}}}}dy = -\int{\frac{x}{\sqrt{1 + {x}^{2}}}}dx$
You asked: