Solve √(δx²+δy²)

asked by guest
on Nov 16, 2024 at 12:54 am



You asked:

Evaluate the expression: \(\sqrt{δ \cdot {x}^{2} + δ \cdot {y}^{2}}\)

MathBot Answer:

Evaluated



\(\displaystyle \sqrt{δ \cdot {x}^{2} + δ \cdot {y}^{2}} = \sqrt{x^{2} δ + y^{2} δ} \)


Expanded

\[\sqrt{δ \cdot {x}^{2} + δ \cdot {y}^{2}} = \sqrt{x^{2} δ + y^{2} δ}\]


Factored

\[\sqrt{δ \cdot {x}^{2} + δ \cdot {y}^{2}} = \sqrt{δ \left(x^{2} + y^{2}\right)}\]

Roots

\[\sqrt{δ \cdot {x}^{2} + δ \cdot {y}^{2}} = i \sqrt[4]{\left(\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)}\right)^{2} + \left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)},\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)} \right)}}{2} \right)} + \sqrt[4]{\left(\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)}\right)^{2} + \left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)},\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)} \right)}}{2} \right)} \approx i \left(\left(\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)}\right)^{2} + \left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)}\right)^{2}\right)^{0.25} \sin{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)},\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)} \right)}}{2} \right)} + \left(\left(\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)}\right)^{2} + \left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)}\right)^{2}\right)^{0.25} \cos{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)},\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)} \right)}}{2} \right)}\]\[\sqrt{δ \cdot {x}^{2} + δ \cdot {y}^{2}} = i \left(- \sqrt[4]{\left(\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)}\right)^{2} + \left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)},\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)} \right)}}{2} \right)}\right) - \sqrt[4]{\left(\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)}\right)^{2} + \left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)},\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)} \right)}}{2} \right)} \approx - i \left(\left(\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)}\right)^{2} + \left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)}\right)^{2}\right)^{0.25} \sin{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)},\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)} \right)}}{2} \right)} - \left(\left(\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)}\right)^{2} + \left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)}\right)^{2}\right)^{0.25} \cos{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(x^{2} δ\right)} + \operatorname{im}{\left(y^{2} δ\right)},\operatorname{re}{\left(x^{2} δ\right)} + \operatorname{re}{\left(y^{2} δ\right)} \right)}}{2} \right)}\]