(1/2 ÷1/3 −2/3 )×(1/2 ÷1/3 +2/3 )
You asked:
MathBot Answer:
\[\left(\frac{\frac{\frac{1}{2}}{1}}{3} - \frac{2}{3}\right) \cdot \left(\frac{\frac{\frac{1}{2}}{1}}{3} + \frac{2}{3}\right) = - \frac{5}{12} = -0.41\overline{6}\]
\[\begin{aligned}\left(\frac{\frac{\frac{1}{2}}{1}}{3} - \frac{2}{3}\right) \cdot \left(\frac{\frac{\frac{1}{2}}{1}}{3} + \frac{2}{3}\right)& = \left(\frac{1}{2} \cdot 1^{-1} \cdot \frac{1}{3} - \frac{2}{3}\right) \cdot \left(\frac{1}{2} \cdot 1^{-1} \cdot \frac{1}{3} + \frac{2}{3}\right)\\& = \left(\frac{1}{2} \cdot \frac{1}{3} - \frac{2}{3}\right) \cdot \left(\frac{1}{2} \cdot 1^{-1} \cdot \frac{1}{3} + \frac{2}{3}\right)\\& = \left(\frac{1}{6} - \frac{2}{3}\right) \cdot \left(\frac{1}{2} \cdot 1^{-1} \cdot \frac{1}{3} + \frac{2}{3}\right)\\& = - \frac{1}{2} \cdot \left(\frac{1}{2} \cdot 1^{-1} \cdot \frac{1}{3} + \frac{2}{3}\right)\\& = - \frac{1}{2} \cdot \left(\frac{1}{2} \cdot \frac{1}{3} + \frac{2}{3}\right)\\& = - \frac{1}{2} \cdot \left(\frac{1}{6} + \frac{2}{3}\right)\\& = - \frac{1}{2} \cdot \frac{5}{6}\\& = - \frac{5}{12}\end{aligned}\]