(3*a^(2)*b)*(a^(2)-b^(2))*(2a+2b)

asked by guest
on Nov 17, 2024 at 1:52 pm



You asked:

Evaluate the expression: \(3 \cdot {a}^{2} \cdot b \cdot \left({a}^{2} - {b}^{2}\right) \cdot \left(2 a + 2 b\right)\)

MathBot Answer:

Evaluated



\(\displaystyle 3 \cdot {a}^{2} \cdot b \cdot \left({a}^{2} - {b}^{2}\right) \cdot \left(2 a + 2 b\right) = 3 a^{2} b \left(2 a + 2 b\right) \left(a^{2} - b^{2}\right) \)


Expanded

\[3 \cdot {a}^{2} \cdot b \cdot \left({a}^{2} - {b}^{2}\right) \cdot \left(2 a + 2 b\right) = 6 a^{5} b + 6 a^{4} b^{2} - 6 a^{3} b^{3} - 6 a^{2} b^{4}\]


Factored

\[3 \cdot {a}^{2} \cdot b \cdot \left({a}^{2} - {b}^{2}\right) \cdot \left(2 a + 2 b\right) = 6 a^{2} b \left(a - b\right) \left(a + b\right)^{2}\]