(3*a^(2)*b)*(a^(2)-b^(2))*(2a+2b)
You asked:
Evaluate the expression: \(3 \cdot {a}^{2} \cdot b \cdot \left({a}^{2} - {b}^{2}\right) \cdot \left(2 a + 2 b\right)\)
MathBot Answer:
Evaluated
\(\displaystyle 3 \cdot {a}^{2} \cdot b \cdot \left({a}^{2} - {b}^{2}\right) \cdot \left(2 a + 2 b\right) = 3 a^{2} b \left(2 a + 2 b\right) \left(a^{2} - b^{2}\right) \)
Expanded
\[3 \cdot {a}^{2} \cdot b \cdot \left({a}^{2} - {b}^{2}\right) \cdot \left(2 a + 2 b\right) = 6 a^{5} b + 6 a^{4} b^{2} - 6 a^{3} b^{3} - 6 a^{2} b^{4}\]
Factored
\[3 \cdot {a}^{2} \cdot b \cdot \left({a}^{2} - {b}^{2}\right) \cdot \left(2 a + 2 b\right) = 6 a^{2} b \left(a - b\right) \left(a + b\right)^{2}\]