4.225 (RC) + RC = 80
You asked:
Investigate the equation: \(4.225 \cdot R C + R C = 80\).
MathBot Answer:
The graph of the equation \(4.225 \cdot R C + R C = 80\) is a hyperbola.
The coordinates of its foci are: \(\left(- \frac{80 \sqrt{209}}{209}, - \frac{80 \sqrt{209}}{209}\right)\) and \(\left(\frac{80 \sqrt{209}}{209}, \frac{80 \sqrt{209}}{209}\right)\).
The coordinates of its vertices are: \(\left(- \frac{40 \sqrt{418}}{209}, - \frac{40 \sqrt{418}}{209}\right)\) and \(\left(\frac{40 \sqrt{418}}{209}, \frac{40 \sqrt{418}}{209}\right)\).
The asymptotes have equations: \(- 160 \sqrt{418} C = 0\) and \(- 160 \sqrt{418} R = 0\).