${1549.73}^{2} + {\left( \frac{1549.73 \cdot \left(16 + {x}^{2}\right)}{{x}^{2} - 16} \right)}^{2} + \frac{1549.73 \cdot \left(16 + {x}^{2}\right)}{{x}^{2} - 16} \cdot 1549.73 - {2500}^{2} = 0$

asked by guest
on Nov 18, 2024 at 8:35 am



You asked:

Solve the equation \({1549.73}^{2} + {\left( \frac{1549.73 \cdot \left(16 + {x}^{2}\right)}{{x}^{2} - 16} \right)}^{2} + \frac{1549.73 \cdot \left(16 + {x}^{2}\right)}{{x}^{2} - 16} \cdot 1549.73 - {2500}^{2} = 0\) for the variable \(x\).

MathBot Answer:

The 4 solutions to the equation are: \[\begin{aligned}x &= - 4 \sqrt{- \frac{62500000000}{9549892187} + \frac{154973 \sqrt{177950107813}}{9549892187}} \approx -2.1943474\\x &= 4 \sqrt{- \frac{62500000000}{9549892187} + \frac{154973 \sqrt{177950107813}}{9549892187}} \approx 2.1943474\\x &= 4 i \sqrt{- \frac{154973 \sqrt{177950107813}}{9549892187} - \frac{62500000000}{9549892187}} i \approx -14.636995 i\\x &= - 4 i \sqrt{- \frac{154973 \sqrt{177950107813}}{9549892187} - \frac{62500000000}{9549892187}} i \approx 14.636995 i\end{aligned}\]