(5r+7)tan(47)=137.2
You asked:
Solve the equation \(\left(5 r + 7\right) \cdot \tan\left( 47 \right) = 137.2\) for the variable \(r\).
MathBot Answer:
The solution is: \[r = - \frac{7}{5} + \frac{686}{25 \tan{\left(47 \right)}} \approx -221.75281\]
\[\begin{aligned}r 5 \tan{\left(47 \right)} + 7 \tan{\left(47 \right)} &= 137.2\\r 5 \tan{\left(47 \right)} &= 137.2 - 7 \tan{\left(47 \right)}\\r &= \frac{137.2 - 7 \tan{\left(47 \right)}}{5 \tan{\left(47 \right)}}\end{aligned}\]