e^(-24.16)
You asked:
Evaluate the expression: \({e}^{-24.16}\)
MathBot Answer:
\[{e}^{-24.16} = e^{- \frac{604}{25}} \approx 3.21695745441922188819 \cdot 10^{-11}\]
\[\begin{aligned}{e}^{-24.16}& = e^{- \left(24 + \frac{16}{100}\right)}\\& = e^{- \left(24 + \frac{4}{25}\right)}\\& = e^{- \frac{604}{25}}\\& = \frac{1}{e^{\frac{604}{25}}}\\& = e^{- \frac{604}{25}}\end{aligned}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).