44.1(3.2)28.99109\sqrt[]{\frac{44.1\cdot \left(3.2\right)^{2}}{8.99\cdot 10^{9}}}

asked by guest
on Nov 28, 2024 at 7:43 am



You asked:

Evaluate the expression: 44.13.228.99109\sqrt{\frac{44.1 \cdot {3.2}^{2}}{8.99 \cdot {10}^{9}}}

MathBot Answer:

44.13.228.99109=2189928093750.00022412454824426354414334505577\sqrt{\frac{44.1 \cdot {3.2}^{2}}{8.99 \cdot {10}^{9}}} = \frac{21 \sqrt{899}}{2809375} \approx 0.00022412454824426354414334505577


44.13.228.99109=(44+110)(3+210)21(8+99100)109=44110(3+210)21(8+99100)109=44110(3+15)21(8+99100)109=44110(165)21(8+99100)109=44110256251(8+99100)109=44110256251899100109=441102562518991001000000000=441102562518990000000=4411021755859375=4418779296875=212809375899\begin{aligned}\sqrt{\frac{44.1 \cdot {3.2}^{2}}{8.99 \cdot {10}^{9}}}&=\sqrt{\left(44 + \frac{1}{10}\right) \cdot \left(3 + \frac{2}{10}\right)^{2} \cdot \frac{1}{\left(8 + \frac{99}{100}\right) \cdot 10^{9}}}\\&=\sqrt{\frac{441}{10} \cdot \left(3 + \frac{2}{10}\right)^{2} \cdot \frac{1}{\left(8 + \frac{99}{100}\right) \cdot 10^{9}}}\\&=\sqrt{\frac{441}{10} \cdot \left(3 + \frac{1}{5}\right)^{2} \cdot \frac{1}{\left(8 + \frac{99}{100}\right) \cdot 10^{9}}}\\&=\sqrt{\frac{441}{10} \cdot \left(\frac{16}{5}\right)^{2} \cdot \frac{1}{\left(8 + \frac{99}{100}\right) \cdot 10^{9}}}\\&=\sqrt{\frac{441}{10} \cdot \frac{256}{25} \cdot \frac{1}{\left(8 + \frac{99}{100}\right) \cdot 10^{9}}}\\&=\sqrt{\frac{441}{10} \cdot \frac{256}{25} \cdot \frac{1}{\frac{899}{100} \cdot 10^{9}}}\\&=\sqrt{\frac{441}{10} \cdot \frac{256}{25} \cdot \frac{1}{\frac{899}{100} \cdot 1000000000}}\\&=\sqrt{\frac{441}{10} \cdot \frac{256}{25} \cdot \frac{1}{8990000000}}\\&=\sqrt{\frac{441}{10} \cdot \frac{2}{1755859375}}\\&=\sqrt{\frac{441}{8779296875}}\\&=\frac{21}{2809375} \cdot \sqrt{899}\end{aligned}