$\sqrt{\32+48}$/$\sqrt{\8+12}$

asked by guest
on Dec 27, 2024 at 12:47 am



You asked:

Evaluate the expression: \(\frac{\sqrt{32 + 48}}{\sqrt{8 + 12}}\)

MathBot Answer:

\[\frac{\sqrt{32 + 48}}{\sqrt{8 + 12}} = 2\]


\[\begin{aligned}\frac{\sqrt{32 + 48}}{\sqrt{8 + 12}}& = \sqrt{32 + 48} \cdot \frac{1}{\sqrt{8 + 12}}\\& = \sqrt{80} \cdot \frac{1}{\sqrt{8 + 12}}\\& = 4 \cdot \sqrt{5} \cdot \frac{1}{\sqrt{8 + 12}}\\& = 4 \cdot \sqrt{5} \cdot \frac{1}{\sqrt{20}}\\& = 4 \cdot \sqrt{5} \cdot \frac{1}{2 \cdot \sqrt{5}}\\& = 2\end{aligned}\]