$\sqrt{\32+48}$/$\sqrt{\8+12}$
You asked:
Evaluate the expression: \(\frac{\sqrt{32 + 48}}{\sqrt{8 + 12}}\)
MathBot Answer:
\[\frac{\sqrt{32 + 48}}{\sqrt{8 + 12}} = 2\]
\[\begin{aligned}\frac{\sqrt{32 + 48}}{\sqrt{8 + 12}}& = \sqrt{32 + 48} \cdot \frac{1}{\sqrt{8 + 12}}\\& = \sqrt{80} \cdot \frac{1}{\sqrt{8 + 12}}\\& = 4 \cdot \sqrt{5} \cdot \frac{1}{\sqrt{8 + 12}}\\& = 4 \cdot \sqrt{5} \cdot \frac{1}{\sqrt{20}}\\& = 4 \cdot \sqrt{5} \cdot \frac{1}{2 \cdot \sqrt{5}}\\& = 2\end{aligned}\]