is n!/n^n convergent?
You asked:
MathBot Answer:
The infinite series \(\displaystyle\sum_{n=1}^{\infty} \frac{n!}{n^{n}}\) converges.
We can use the ratio test to determine convergence of this series.
Given a series \(\displaystyle\sum a_n\), define \(L = \displaystyle\lim_{n \to \infty}\left|\frac{a_{n+1}}{a_n}\right|\)
•If \(L < 1\) the series converges absolutely.
•If \(L > 1\) the series diverges.
•If \(L = 1\) or the limit does not exist the test is inconclusive.
$$\begin{aligned}L &= \lim_{n \to \infty}\left|\frac{\left(n + 1\right)^{- n - 1} \left(n + 1\right)!}{n^{- n} n!}\right| \\ &= \lim_{n \to \infty} n^{n} \left|{\frac{\left(n + 1\right)!}{n \left(n + 1\right)^{n} n! + \left(n + 1\right)^{n} n!}}\right| \\ &= e^{-1}\end{aligned}$$Therefore the series converges.
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).