1+0/0(cosec0 - cot0)

asked by guest
on Nov 26, 2024 at 4:24 pm



You asked:

Evaluate the expression: \(1 + \frac{0}{0 \cdot \left(\csc\left( 0 \right) - \cot\left( 0 \right)\right)}\)

MathBot Answer:

\[1 + \frac{0}{0 \cdot \left(\csc\left( 0 \right) - \cot\left( 0 \right)\right)} = \text{NaN}\]


\[\begin{aligned}1 + \frac{0}{0 \cdot \left(\csc\left( 0 \right) - \cot\left( 0 \right)\right)}& = 1 + 0 \cdot \frac{1}{0 \cdot \left(\csc{\left(0 \right)} - \cot{\left(0 \right)}\right)}\\& = 1 + 0 \cdot \frac{1}{0 \cdot \left(\tilde{\infty} - \cot{\left(0 \right)}\right)}\\& = 1 + 0 \cdot \frac{1}{0 \cdot \left(\tilde{\infty} + - \tilde{\infty}\right)}\\& = 1 + 0 \cdot \frac{1}{0 \cdot \left(\tilde{\infty} + \tilde{\infty}\right)}\\& = 1 + 0 \cdot \frac{1}{0 \cdot \text{NaN}}\\& = 1 + 0 \cdot \frac{1}{\text{NaN}}\\& = 1 + \text{NaN}\\& = \text{NaN}\end{aligned}\]