(x+3)(x-5)-(2x+3)(2x-5)
You asked:
Evaluate the expression: \(\left(x + 3\right) \cdot \left(x - 5\right) - \left(2 x + 3\right) \cdot \left(2 x - 5\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(x + 3\right) \cdot \left(x - 5\right) - \left(2 x + 3\right) \cdot \left(2 x - 5\right) = - \left(2 x - 5\right) \left(2 x + 3\right) + \left(x - 5\right) \left(x + 3\right) \)
Expanded
\[\left(x + 3\right) \cdot \left(x - 5\right) - \left(2 x + 3\right) \cdot \left(2 x - 5\right) = - 3 x^{2} + 2 x\]
Factored
\[\left(x + 3\right) \cdot \left(x - 5\right) - \left(2 x + 3\right) \cdot \left(2 x - 5\right) = - x \left(3 x - 2\right)\]