-9y -6x + 18 + 2xy + y^2 = 0
-9x +6y + 18 + 2xy + x^2 = 0
You asked:
Solve the system of equations:\[\begin{aligned}-\left( 9 y \right) - 6 x + 18 + 2 x y + {y}^{2} &= 0\\-\left( 9 x \right) + 6 y + 18 + 2 x y + {x}^{2} &= 0\end{aligned}\]
MathBot Answer:
The system of equations has \(4\) solutions.
\[x = -6, y = 18\]\[x = 3, y = 0\]\[x = \frac{3}{2} - \frac{3 \sqrt{15} i}{2}, y = 3\]\[x = \frac{3}{2} + \frac{3 \sqrt{15} i}{2}, y = 3\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).