55x²-5x+1/x-5=0
You asked:
MathBot Answer:
The 3 solutions to the equation are: \[\begin{aligned}x &= \frac{1}{33} - \frac{34}{363 \sqrt[3]{\frac{1381}{6655} + \frac{3 \sqrt{849}}{605}}} - \frac{\sqrt[3]{\frac{1381}{6655} + \frac{3 \sqrt{849}}{605}}}{3} \approx -0.33770859\\x &= \frac{1}{33} + \frac{17}{363 \sqrt[3]{\frac{3 \sqrt{849}}{605} + \frac{1381}{6655}}} + \frac{\sqrt[3]{\frac{3 \sqrt{849}}{605} + \frac{1381}{6655}}}{6} + i \left(- \frac{17 \sqrt{3}}{363 \sqrt[3]{\frac{3 \sqrt{849}}{605} + \frac{1381}{6655}}} + \frac{\sqrt{3} \sqrt[3]{\frac{3 \sqrt{849}}{605} + \frac{1381}{6655}}}{6}\right) \approx 0.21430884 + 0.088940998 i\\x &= \frac{1}{33} + \frac{17}{363 \sqrt[3]{\frac{3 \sqrt{849}}{605} + \frac{1381}{6655}}} + \frac{\sqrt[3]{\frac{3 \sqrt{849}}{605} + \frac{1381}{6655}}}{6} + i \left(- \frac{\sqrt{3} \sqrt[3]{\frac{3 \sqrt{849}}{605} + \frac{1381}{6655}}}{6} + \frac{17 \sqrt{3}}{363 \sqrt[3]{\frac{3 \sqrt{849}}{605} + \frac{1381}{6655}}}\right) \approx 0.21430884 -0.088940998 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).