3x^2+9b=(3x+25)(2x+3)

asked by guest
on Dec 24, 2024 at 10:13 am



You asked:

Investigate the equation: 3x2+9b=(3x+25)(2x+3)3 {x}^{2} + 9 b = \left(3 x + 25\right) \left(2 x + 3\right).

MathBot Answer:

The graph of the equation 3x2+9b=(3x+25)(2x+3)3 {x}^{2} + 9 b = \left(3 x + 25\right) \left(2 x + 3\right) is a parabola.


The coordinates of its vertex are: (2581108,596)\left(- \frac{2581}{108}, - \frac{59}{6}\right)

The coordinates of its focus are: (62527,596)\left(- \frac{625}{27}, - \frac{59}{6}\right)

The directrix has equation: 4b3+266281=0\frac{4 b}{3} + \frac{2662}{81} = 0.

The parabola has parameterization: b(θ)=2581108+θ23x(θ)=596+θ\begin{aligned}b\left(\theta\right) &= - \frac{2581}{108} + \frac{\theta^{2}}{3}\\x\left(\theta\right) &= - \frac{59}{6} + \theta\end{aligned}

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls