simplify fully, (x^2+4)^2-(x^2-2)^2
asked by guest on Apr 10, 2025 at 1:26 am
You asked:
MathBot Answer:
(x2+4)2−(x2−2)2=−(x2−2)2+(x2+4)2 {\left( {x}^{2} + 4 \right)}^{2} - {\left( {x}^{2} - 2 \right)}^{2} = - \left(x^{2} - 2\right)^{2} + \left(x^{2} + 4\right)^{2} (x2+4)2−(x2−2)2=−(x2−2)2+(x2+4)2
(x2+4)2−(x2−2)2=−(x4−4x2+4)+(x2+4)2=x4+8x2+16−x4−4x2+4=−x4+4x2−4+x4+8x2+16=12x2+12\begin{aligned}\left(x^{2} + 4\right)^{2} - \left(x^{2} - 2\right)^{2}&=-\left(x^{4} - 4 x^{2} + 4\right) + \left(x^{2} + 4\right)^{2}\\&=x^{4} + 8 x^{2} + 16 - x^{4} - 4 x^{2} + 4\\&=- x^{4} + 4 x^{2} - 4 + x^{4} + 8 x^{2} + 16\\&=12 x^{2} + 12\end{aligned}(x2+4)2−(x2−2)2=−(x4−4x2+4)+(x2+4)2=x4+8x2+16−x4−4x2+4=−x4+4x2−4+x4+8x2+16=12x2+12
(x2+4)2−(x2−2)2=12x2+12 {\left( {x}^{2} + 4 \right)}^{2} - {\left( {x}^{2} - 2 \right)}^{2} = 12 x^{2} + 12 (x2+4)2−(x2−2)2=12x2+12