expand and simplify (p+4)(p+3)(p-1)
You asked:
Simplify the expression: \(\left(p + 4\right) \cdot \left(p + 3\right) \cdot \left(p - 1\right)\)
MathBot Answer:
Simplified:
\[ \left(p + 4\right) \cdot \left(p + 3\right) \cdot \left(p - 1\right) = \left(p - 1\right) \left(p + 3\right) \left(p + 4\right) \]
Expanded:
\[ \left(p + 4\right) \cdot \left(p + 3\right) \cdot \left(p - 1\right) = p^{3} + 6 p^{2} + 5 p - 12 \]
Factored:
\[ \left(p + 4\right) \cdot \left(p + 3\right) \cdot \left(p - 1\right) = \left(p - 1\right) \left(p + 3\right) \left(p + 4\right) \]