e^(-2 $\pi$ jf)-e^(2 $\pi$ jf)
You asked:
Evaluate the expression: \({e}^{-\left( 2 \cdot \pi \cdot j f \right)} - {e}^{2 \cdot \pi \cdot j f}\)
MathBot Answer:
Evaluated
\(\displaystyle {e}^{-\left( 2 \cdot \pi \cdot j f \right)} - {e}^{2 \cdot \pi \cdot j f} = - e^{2 f j \pi} + e^{- 2 f j \pi} \)
Factored
\[{e}^{-\left( 2 \cdot \pi \cdot j f \right)} - {e}^{2 \cdot \pi \cdot j f} = - \left(e^{f j \pi} - 1\right) \left(e^{f j \pi} + 1\right) \left(e^{2 f j \pi} + 1\right) e^{- 2 f j \pi}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).