10{1-x/10} -10-x-(10/100-x/100)=0.05
You asked:
Solve the equation \(10 \cdot \left(1 - \frac{x}{10}\right) - 10 - x - \left(\frac{10}{100} - \frac{x}{100}\right) = 0.05\) for the variable \(x\).
MathBot Answer:
The solution is: \[x = - \frac{15}{199} = -0.0\overline{753768844221105527638190954773869346733668341708542713567839195979899497487437185929648241206030150}\]
\[\begin{aligned}10 \cdot \left(1 - \frac{x}{10}\right) - 10 - x - \left(\frac{10}{100} - \frac{x}{100}\right) &= 0.05\\-1.99 x - 0.1 &= 0.05\\-1.99 x &= 0.15\\x &= - \frac{15}{199}\end{aligned}\]