$\frac{1}{190000}$ ( $\frac{20}{3}$ $a^{3}$ - $\frac{26227}{256}$ $a^{2}$ + $\frac{6467}{16}$ $a^{1}$ ) = 0
You asked:
Solve the equation \(\frac{1}{190000} \cdot \left(\frac{20}{3} \cdot {a}^{3} - \frac{26227}{256} \cdot {a}^{2} + \frac{6467}{16} \cdot {a}^{1}\right) = 0\) for the variable \(a\).
MathBot Answer:
The 3 solutions to the equation are: \[\begin{aligned}a &= 0\\a &= \frac{78681}{10240} - \frac{\sqrt{166619919} i}{10240} \approx 7.68369140625 -1.2605599 i\\a &= \frac{78681}{10240} + \frac{\sqrt{166619919} i}{10240} \approx 7.68369140625 + 1.2605599 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).