(1-y)*(-1-y)*(4-y)-((-2)*(-1-y)*(-2))
You asked:
Evaluate the expression: \(\left(1 - y\right) \cdot \left(-1 - y\right) \cdot \left(4 - y\right) - -2 \cdot \left(-1 - y\right) \cdot -2\)
MathBot Answer:
Evaluated
\(\displaystyle \left(1 - y\right) \cdot \left(-1 - y\right) \cdot \left(4 - y\right) - -2 \cdot \left(-1 - y\right) \cdot -2 = 4 y + \left(1 - y\right) \left(4 - y\right) \left(- y - 1\right) + 4 \)
Expanded
\[\left(1 - y\right) \cdot \left(-1 - y\right) \cdot \left(4 - y\right) - -2 \cdot \left(-1 - y\right) \cdot -2 = - y^{3} + 4 y^{2} + 5 y\]
Factored
\[\left(1 - y\right) \cdot \left(-1 - y\right) \cdot \left(4 - y\right) - -2 \cdot \left(-1 - y\right) \cdot -2 = - y \left(y - 5\right) \left(y + 1\right)\]