(2**5+2**8)**5*2**-5

asked by guest
on Nov 27, 2024 at 7:52 am



You asked:

Evaluate the expression: \({\left( {2}^{5} + {2}^{8} \right)}^{5} {2}^{-5}\)

MathBot Answer:

\[{\left( {2}^{5} + {2}^{8} \right)}^{5} {2}^{-5} = 61917364224\]


\[\begin{aligned}{\left( {2}^{5} + {2}^{8} \right)}^{5} {2}^{-5}& = \left(2^{5} + 2^{8}\right)^{5} \cdot \frac{1}{2^{5}}\\& = \left(32 + 2^{8}\right)^{5} \cdot \frac{1}{2^{5}}\\& = \left(32 + 256\right)^{5} \cdot \frac{1}{2^{5}}\\& = 288^{5} \cdot \frac{1}{2^{5}}\\& = 1981355655168 \cdot \frac{1}{2^{5}}\\& = \frac{1981355655168}{32}\\& = 61917364224\end{aligned}\]