5=(1+r/100)^3
You asked:
MathBot Answer:
The solutions are given by the formula: \[r = \left(-100 + 100 \cdot \sqrt[3]{5} \cos{\left(\frac{2 \pi k}{3} \right)}\right) + 100 \cdot \sqrt[3]{5} \sin{\left(\frac{2 \pi k}{3} \right)} i\] where \(k\) is an integer in \(0 \le k < 3\).
There is \(1\) real solution.There are \(2\) solutions with nonzero imaginary part.
Real solutions: \[\begin{aligned}r &= -100 + 100 \cdot \sqrt[3]{5} \\&\approx 70.997595\end{aligned}\]
Solutions with nonzero imaginary part: \[\begin{aligned}r &= -100 - 50 \cdot \sqrt[3]{5} + 50 \sqrt{3} \cdot \sqrt[3]{5} i \\&\approx -185.4988 + 148.08826 i\\r &= -100 - 50 \cdot \sqrt[3]{5} - 50 \sqrt{3} \cdot \sqrt[3]{5} i \\&\approx -185.4988 -148.08826 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).