0.03x^4 - 0.8x^3 + 6x^2 - 5 = 0

asked by guest
on Mar 31, 2025 at 10:37 am



You asked:

Solve the equation 0.03x40.8x3+6x25=00.03 {x}^{4} - 0.8 {x}^{3} + 6 {x}^{2} - 5 = 0 for the variable xx.

MathBot Answer:

The 4 solutions to the equation are: x=2034009+295000027+950005273+19000995000027+95000527328009295000027+95000527319000995000027+950005273+16000274009+295000027+950005273+19000995000027+95000527320.86304558x=203+8009295000027+95000527319000995000027+950005273+16000274009+295000027+950005273+19000995000027+95000527324009+295000027+950005273+19000995000027+95000527320.97611463x=4009+19000995000527+950000273+295000527+9500002732+203i8009+16000274009+19000995000527+950000273+295000527+950000273+19000995000527+950000273+295000527+950000273213.2767994.6439913ix=4009+19000995000527+950000273+295000527+9500002732+203+i8009+16000274009+19000995000527+950000273+295000527+950000273+19000995000527+950000273+295000527+950000273213.276799+4.6439913i\begin{aligned}x &= \frac{20}{3} - \frac{\sqrt{\frac{400}{9} + 2 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}} + \frac{19000}{9 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}}}}}{2} - \frac{\sqrt{\frac{800}{9} - 2 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}} - \frac{19000}{9 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}}} + \frac{16000}{27 \sqrt{\frac{400}{9} + 2 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}} + \frac{19000}{9 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}}}}}}}{2} \approx -0.86304558\\x &= \frac{20}{3} + \frac{\sqrt{\frac{800}{9} - 2 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}} - \frac{19000}{9 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}}} + \frac{16000}{27 \sqrt{\frac{400}{9} + 2 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}} + \frac{19000}{9 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}}}}}}}{2} - \frac{\sqrt{\frac{400}{9} + 2 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}} + \frac{19000}{9 \sqrt[3]{\frac{950000}{27} + \frac{95000 \sqrt{5}}{27}}}}}{2} \approx 0.97611463\\x &= \frac{\sqrt{\frac{400}{9} + \frac{19000}{9 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}} + 2 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}}}{2} + \frac{20}{3} - \frac{i \sqrt{- \frac{800}{9} + \frac{16000}{27 \sqrt{\frac{400}{9} + \frac{19000}{9 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}} + 2 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}}} + \frac{19000}{9 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}} + 2 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}}}{2} \approx 13.276799 -4.6439913 i\\x &= \frac{\sqrt{\frac{400}{9} + \frac{19000}{9 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}} + 2 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}}}{2} + \frac{20}{3} + \frac{i \sqrt{- \frac{800}{9} + \frac{16000}{27 \sqrt{\frac{400}{9} + \frac{19000}{9 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}} + 2 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}}} + \frac{19000}{9 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}} + 2 \sqrt[3]{\frac{95000 \sqrt{5}}{27} + \frac{950000}{27}}}}{2} \approx 13.276799 + 4.6439913 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.